Ch. 6 Cloud/precipitation Formation and Process:

- Reading: Text, ch. 6.1-6.6, p209-245
- Reference: Ch.3 of "Cloud Dynamics" by Houze
- Topics:
 - Cloud microphysics: cloud droplet nucleation and growth, precipitation process
 - Cloud dynamics: the dynamic conditions determine the formation and development of clouds

Cloud/Precipitation Microphysics:

- What control the growth-dissipation of cloud droplets and falling of precipitation drops?
- Cloud microphysics also determine the precipitation efficiency

Figure 5.12 Empirical model of the formation of ice in stratocumulus clouds. The model is based on extensive probing of clouds by research aircraft. (From Hobbs and Rangno, 1985. Reprinted with permission from the American Meteorological Society.)

Size determines falling speed, cloud or precipitation

• Define CCN, Cloud, drizzle and precipitation droplets

Growth of warm (liquid) clouds

- When r < 0.1 mm, fall speed is negligible, cloud droplets grow from condensation
- When r > 0.1 mm, fall speed increases and collision between cloud droplets (coalescence) dominates the growth.
- When r>3.5mm, breakup of drops occur

Growth by condensation

• Nucleation of cloud droplet:

$$\Delta E = 4\pi R^2 \sigma_{vl}$$

$$\frac{4}{3}\pi R^3 n_l(\mu_v - \mu_l)$$

surface tension *work* required to form a surface vapor

rm energy change from vapor to liquid vapor to liquid, supplies energy to form a surface

 ΔE : the net increase in the energy of the system due to the formation of the droplet.

R : radius of the droplet, $4\pi R^2$: *surface* area, $\frac{4}{3}\pi R^3$: volume of liquid

 σ_{vl} : work required to create a surface

 n_1 : # of water molecules per unit volume in the drop

 μ_v, μ_l : *Gibbs* free energy of a vapor and a liquid molecule

For a drop to grow, $\Delta E < 0$, requires large R

 $R > r_c$ (r_c : the required minimum radius, determined by $\Delta E=0$)

$$r_{c} = \frac{3\sigma_{vl}}{n_{l}(\mu_{v} - \mu_{l})} = \frac{3\sigma_{vl}}{n_{l}k_{B}T \ln(e/e_{s})}$$

where $\mu_{v} - \mu_{l} = k_{B}T \ln(e/e_{s})$
 k_{B} : Boltzmann constant

•Air must be supersaturate $(e/e_s > 1)$ • $r_c \downarrow$ with increase of supersaturation

- Homogeneous nucleation: formation of a droplet from pure water vapor. This requires 300-400% supersaturation, too difficult!
- Heterogeneous nucleation: vapor condenses on a foreign object with R>R_c, such as a large aerosol particle (CCN)

• From this slide (7) to slides 13, GEO 347 is not required to master the mathematic formulas.

- Insoluble CCN: CCN only acts as a seed with R>Rc
- Soluble: e_s at wet CCN surface decreases⇒ln(e/e_s)↑ ⇒R_c↓, allows nucleation on smaller CCNs. Air pollution such as SO₂ causes smoggy.

Example:

• How would the critical value ΔE^* change compare to the pure water if we add sodium laurel sulfate (soap) to pure water which decreases the work for creating a surface, σ , by 10%? Note that $\Delta E^* = \frac{16\pi\sigma^3}{3\left(nkT\ln\frac{e}{e}\right)^2}$

$$\frac{d\Delta E^*}{d\sigma} = \frac{d}{d\sigma} \left(\frac{16\pi\sigma^3}{3(nkT \cdot \ln\frac{e}{e_s})^2} \right) = \frac{16\pi \cdot 3\sigma^2}{3(nkT \cdot \ln\frac{e}{e_s})^2} = \frac{16\pi \cdot \sigma^2}{(nkT \cdot \ln\frac{e}{e_s})^2}$$
$$\frac{d\Delta E^*}{\Delta E^*} = \frac{\frac{16\pi \cdot \sigma^2}{(nkT \cdot \ln\frac{e}{e_s})^2} d\sigma}{\frac{16\pi \cdot \sigma^3}{3(nkT \cdot \ln\frac{e}{e_s})^2}} = 3\frac{d\sigma}{\sigma} = 3 \times (-10\%) = -30\%$$

• If we add sodium laurel sulfate (soap) to pure water, it would decrease ΔE^* by 30%.

Net growth of a cloud droplet-for a plane of pure water

• The growth of a cloud drop is determined by net flux of water molecules at the surface of a cloud droplet

$$\frac{dm}{dt} = 4\pi R^2 D_v \frac{d\rho_v}{dr}\Big|_R = 4\pi R D_v \left(\rho_v(\infty) - \rho_v(R)\right)$$

 D_{v} : diffusion coefficient, mass of the droplet

$$\rho_{v}(r) = \rho_{v}(\infty) - \frac{R}{r} \left(\rho_{v}(\infty) - \rho_{v}(R) \right)$$

 $\rho_{v}(\infty)$: *ambinet* vapor density

For a plane of pure water :

$$\frac{dm}{dt} = \frac{4\pi R\tilde{S}}{F_k + F_C}$$
$$\tilde{S} = \frac{e(\infty)}{e_s(\infty)} - 1 \text{ ambinet supersaturation}$$
$$F_K = \frac{L^2}{K_a R_v T^2(\infty)} \text{ heat conductivity}$$
$$F_D = \frac{R_v T(\infty)}{D_v e_s(\infty)} \text{ vapor diffusivity}$$

 κ_a : thermal conductivity D_v : diffusivity of vapor

Net growth of a cloud droplet on a water soluble nucleus with a curved surface

$$\frac{dm}{dt} = \frac{4\pi R}{F_k + F_C} (\tilde{S} - \frac{\hat{a}}{R} + \frac{\hat{b}}{R^3})$$
$$\frac{\hat{a}}{R} = \frac{2\sigma_{vl}}{\rho_L R_v T R} \text{ curvature effect}$$
$$\frac{\hat{b}}{R^3} \sim \frac{m_s M_w}{\rho_L M_s} \frac{1}{R^3} \text{ effect of dissolved salt on e(R)}$$

• For a falling cloud droplet:

$$\frac{dm}{dt} = \frac{4\pi R V_F}{F_k + F_C} (\tilde{S} - \frac{\hat{a}}{R} + \frac{\hat{b}}{R^3})$$
$$V_F : ventilation \text{ factor}$$

Growth of a cloud droplet:

• Growth of the droplet by coalescence:

$$m_{col} = A_m |V(m) - V(m')| \rho q_{m'} \sum_c (m, m')$$

$$\sum_{c} (m,m') \propto \frac{y^2}{(r_1 + r_2)^2} : collection \text{ efficiency}$$

 $A_m = \pi (R + R')^2$: *effective* cross - section area V : fall speed

 $\rho q_{m'}$: liquid water content of the collected drops

Factors influence collection efficiency:
Turbulence flow around the collecting drop
Rebound problem: depends on air film trapped between the surface of two drops:

• When two drops large enough to deform easily, the air film drainage is hindered.

•Impact angle and relative velocity

 R_i increases with r_1 , leading to eddy shedding, wake oscillation, shape deformation. The effects of these are quantified unclearly.

Fall speed

- Terminal velocity of raindrops:
 - Small droplet (<500µm): V increases nearly linearly with r
 - Large droplets (mm): v increase rapidly until 3 mm,
 then v → constant.

 $V(r) = aD^{b} (\rho_{air} / \rho_{l})^{1/2}$ $a = 2115 \ cm^{1-b} s^{-1}$ $b = 0.8, \ b = 0.5 \ for \ large \ drops$ $D: diameter \ of \ a \ raindrop$ in unit of μ m

Figure 3.2 Fall velocity of water drops $<500 \ \mu m$ in radius for various atmospheric conditions. (From Beard and Pruppacher, 1969. Reprinted with permission from the American Meteorological Society.)

Figure 3.3 Fall velocity of water drops $>500 \ \mu m$ in radius. (From Beard, 1976. Reprinted with permission from the American Meteorological Society.)

Why does V become a constant?

tte 12. Oscillating water drops of $a_0 = 3.5$ mm, freely suspended in the vertical air stream of a wind tunnel; observation is taken from below the drop's equator.

Fig. 10-8: Comparison between the Reynolds number dependence of the dimensionle drag, D/D_S , for rigid spheres and liquid circulating water drops.

Exercise:

• Estimate the falling velocity for droplets with diameter of 10 μ m, 100 μ m, 1 mm, 5 mm, respectively, using the following formulae. Assume $\rho_{air}/\rho_1=10^{-3}$

$$V(r) = aD^{b} (\rho_{air} / \rho_{l})^{1/2}$$

$$a = 2115 \ cm^{1-b} s^{-1}$$

$$b = 0.8, \ b = 0.5 \ for \ large \ drops$$

$$D: diameter \ of \ a \ raindrop \ in \ \mu m$$

• Example of Solution

2. D = 100 μ m

$$V(r) = aD^{b} (\rho_{air} / \rho_{l})^{1/2} = 2115 cm / s \left(\frac{100}{2115}\right)^{0.8} (10^{-3})^{1/2}$$

= 21.15 m/sX0.09X3.16X0.1 = 0.58m/s
$$a = 2115 cm^{1-b} s^{-1}$$

$$b = 0.8,$$

 $D = 100 \ \mu m$

Breakup of raindrops:

When r > 3.5 mm, breakup becomes noticeable.
 The probability of breakup per unit time:

 $P_B(m) = 2.94 \times 10^{-7} \exp(3.4R)$

R: radius of drop with mass m in mm – The number of drops with mass m to m+dm formed by the breakup of one drop of mass m'

 $Q_B(m',m) = 0.1 \cdot R'^3 \cdot \exp(-15.6R)$

R': radius of break up drop

R : radius of newly formed drops

- The net production of drops of mass m by breakup:

$$\left(\frac{\partial N(m,t)}{\partial t}\right)_{bre} = -N(m,t)P_B(m) + \int_m^\infty N(m',t)Q_B(m',m)P_B(m')dm'$$
Loss of droplets
due to breakup
New droplets
formed by breakup

Cold (ice) Cloud/Precipitation Microphysics:

- Most of precipitation, especially heavy rainfall, is produced by cold cloud process.
- Main processes control growth of cold cloud/precipitation droplets:

Depositional growth:

•Super-saturation, S_i , is easier to reach for ice than for liquid droplets

$$e_{s} = e_{o} \cdot \exp\left(\frac{L}{R_{v}} \cdot \left(\frac{1}{T_{o}} - \frac{1}{T}\right)\right) \qquad L_{i} < L_{l}, \text{ thus } e_{s,i} > e_{s,l}$$

At T= -10C, S_l=0, S_i=10%
At T= -20C, S_l=0, S_i=21%

• Growth rate of an ice particle

$$\frac{dm}{dt} = \frac{4\pi \tilde{C}\tilde{S}_i}{F_{ki} + F_{Ci}}$$

C: shape factor of ice particle

 \tilde{S}_i ambinet supersaturation for ice

 F_{Ki} = heat conductivity of ice particle

F_{Di} vapor diffusivity

 $\frac{dm}{dt} = \frac{4\pi \tilde{C}\tilde{S}_i V_F}{F_{ki} + F_{Di}}$ For a falling ice particle V_F : *ventilation* factor

Ice crystals grow by taking water molecules away from liquid drops.

Wegener-Bergeron-Findeisen Process

Shape of ice crystals-habit

•The shape change with increasing super-saturation is to maximize the surface on which the increased ambient vapor can deposit.

Aggregation and Riming

RADIUS ro

 Aggregation: merging between ice crystals. Aggregation produce snow flakes.

$$\frac{dm}{dt}_{col} = A_m |V(m) - V(m')| \rho_l q_{m'} \sum_c (m, m')$$
$$\sum_c (m, m') \propto \frac{y^2}{(r_1 + r_2)^2}, \text{ collection efficiency}$$

- A_m : effective cross section area, depends on the shape of the ice crystal.
- V: fall speed
- $\rho q_{m'}$: liquid water content of the collected drops

Fig. 4.36 Aggregates of (a) densely rimed needles; (b) unrimed to moderately rimed columns: (c) dendrites; (d) unrimed to densely rimed frozen drops. (Courtesy Cloud Physics Group, University of Washington.)

 Collection efficiency for ice crystals depends on temperatures, often assumed to increase exponentially with temperature. It peaks at 0C ~ -5C and also shows a secondary peak at -10C ~ -16C. Aggregation stops below -20C.

Figure 3.9 Maximum dimensions of natural aggregates of ice crystals as a function of the temperature of the air where they were collected. \times indicates crystals collected from an aircraft. Circles represent crystals collected on the ground. (From Hobbs, 1973b. Reprinted with permission from Oxford University Press.)

- Shape also affect the growth rate.
 - Collection efficiency of broad-branched crystal is lower than that of a hexagonal plate of the same Reynolds number, partically because of its smaller effective cross-section area.
 - Terminal velocity of dendrites and powder snow is approximately independent of its size. Whereas the terminal velocity of rimed crystals and needles flakes strongly vary with their sizes.

Figure 3.8 Schematic representation of the main shapes of ice crystals: (a) columnar, or prismlike; (b) plate; (c) dendrite. (Adapted from Rogers and Yau, 1989.)

- Riming-formation of hails:
 - Supercool water droplets collide with ice crystals and instantly freeze on the surface of the ice crystals.
 - Riming can produce snow flakes, graupels and hailstones.

Figure 3.10 (a) A lightly rimed needle; (b) densely rimed column; (c) densely rimed plate; (d) densely rimed stellar; (e) lump graupel; (f) cone graupel. (From Wallace and Hobbs, 1977.)

Fig. 4.35 Artificial hailstone, actual size, showing lobe structure. Growth was initially dry b tended toward wet growth as the stone grew. [From Quart. J. Roy. Met. Soc. 94, 10 (1968).]

- Shape of ice crystals also affect the riming growth rate.
 - Similar to aggregation process, collection efficiency of broadbranched crystal is lower than that of a hexagonal plate of the same Reynolds number, due to its smaller effective crosssection.
 - Minimum cut-off size of snow crystals for riming varies with shapes. Generally about 100-200 µm for planar snow crystals, and 35µm for columnar crystals.

Fig. 14-11: Efficiencies with which simple hexagonal plate crystals collide with drops of various sizes for various Reynolds numbers of the crystals. (1) $N_{\rm Re} = 1.d$ μ m, h = 18 μ m; (2) $N_{\rm Re} = 2, d = 226.5 \mu$ m, h = 20 μ m; (3) $N_{\rm Re} = 10, d = 500.32 \mu$ m; (4) $N_{\rm Re} = 20, d = 716.3 \mu$ m, h = 37 μ m; (5) $N_{\rm Re} = 35, d = 947.6 \mu$ m μ m; (6) $N_{\rm Re} = 100, d = 1240 \mu$ m, h = 45 μ m; (7) $N_{\rm Re} = 90, d = 1500 \mu$ m, h (8) $N_{\rm Re} = 120, d = 1700 \mu$ m, h = 49 μ m. (From Wang & Ji, 1992, with change

Riming of hexagonal crystals

: 14-12: Efficiencies with which broad-branched snow crystals collide with water drops tarious sizes, for various Reynolds numbers of the crystals. (1) $N_{\rm Re} = 1, d = 200 \ \mu {\rm m}, + 15 \ \mu {\rm m}; (2) \ N_{\rm Re} = 2, d = 250 \ \mu {\rm m}, h = 18 \ \mu {\rm m}; (3) \ N_{\rm Re} = 10, d = 700 \ \mu {\rm m}, h = 32 \ (1) \ N_{\rm Re} = 20, d = 1000 \ \mu {\rm m}, h = 40 \ \mu {\rm m}; (5) \ N_{\rm Re} = 35, d = 1500 \ \mu {\rm m}, d = 50 \ \mu {\rm m}; (3) \ N_{\rm Re} = 60, d = 2000 \ \mu {\rm m}, h = 60 \ \mu {\rm m}; (7) \ N_{\rm Re} = 90, d = 2500 \ \mu {\rm m}, h = 65 \ \mu {\rm m}; (8) \ N_{\rm Re} = 120, d = 3100 \ \mu {\rm m}, h = 73 \ \mu {\rm m}. (From Wang \& Ji, 1992, with changes.)$

Riming of broad-branched crystals

Fall speed

- Graupels and colummar crystals: fall speed increases rapidly with their sizes. Gravitational force (~r³) increases more than drag force proportional to the crosssection area (r²).
- Planar crystals: fall speed varies little with size. Gravitational force (~r²) increases at a similar rate of the drag force (~crosssection area, r²).

Figure 3.12 Terminal fall speeds of snow crystals as a function of their maximum dimensions. Open circle (uppermost curve) indicates graupel fall speeds. Other curves are for rimed crystals (dot in circle), needles (filled circle with slash), spatial dendrites (triangle), powder snow (×), and dendrites (filled circle). (From Nakaya and Terada, 1935.)

Fig. 10-8: Comparison between the Reynolds number dependence of the dimensionle drag, D/D_S , for rigid spheres and liquid circulating water drops.

Melting:

• Above melting zone ($T(\propto) < 0^{\circ}C$), melting can occur on the surface of hailstone when $T(R) \ge 0C$, determined by

$$\frac{dm}{dt} col \left[L_i - C_w (T(R) - T_w) \right] + 4 \pi R D_v \left[\rho_v (\infty) - \rho_v (R) \right] V_{Fs} L_i$$

net heat gain by the ice crystal by freez of liquid water and heat transfer from liquid to ice *diffusion* of heat toward the ice by vapor deposition

Heat gain by ice

= $4 \pi R K_a [T(R) - T(\infty)] V_{FC}$ *diffusion* of heat away from the ice *Heat* lost by ice

 K_a : thermal conductivity of air

 V_{FC} : ventilation factor for conduction

 c_W : specific heat of water

 D_v : diffusivity of vapor

• $T(R) \ge 0C$: wet growth; T(R) < 0C: dry growth Formulas are not required for GEO 347P.

Melting:

As ice fall into the area where T(∞)>0°C, melting begins:

$$-L_{i} \frac{dm}{dt}_{mel} = 4 \pi R K_{a} [T(\infty) - 273K] V_{FC} + \frac{dm}{dt}_{col} c_{w} (T_{w} - 273K)$$

$$latent \text{ cooling of melting} = 4 \pi R K_{a} [T(\infty) - 273K] V_{FC} + \frac{dm}{dt}_{col} c_{w} (T_{w} - 273K)$$

$$heat \text{ transfered to ice}_{from water drops collected}_{ice particle}$$

$$+ 4 \pi R D_{v} [\rho_{v}(\infty) - \rho_{v}(R)] V_{Fs} L_{i}$$

$$diffusion \text{ of heat toward}_{the ice by vapor}$$

$$K_{a} : \text{thermal conductivity of air}$$

$$V_{FC} : \text{ ventilation factor for conduction}$$

$$c_{W} : \text{ specific heat of water}$$

$$D_{v} : \text{ diffusivity of vapor}$$

Cloud Dynamics:

Cloud microphysical process in real clouds:

Interaction between cloud microphysical processes:

Figure 5.46 Schematic of interaction of altocumulus and stratocumulus clouds. (a) Dendmae crystals in a fallstreak from the altocumulus fall into the stratocumulus, where they grow by riming and reach the ground as light precipitation. (b) Small ice particles in a fallstreak from the altocumulus grow into needles in the stratocumulus and contribute to the precipitation at the ground. (From Locate al., 1983. Reproduced with permission from the American Meteorological Society.)

Ice crystals fall from altocumulus grow by riming in stratocumulus below and produce precipitation. A_c and S_c alone would not produce precipitation.

Interaction between cloud microphysics and dynamics:

penetrations of small cumulonimbus and large cumulus clouds. (From Hobbs and Rangno, 1985. Reprinted with permission from the American Meteorological Society.)

Ice enhancement

103

Possible causes:

- Fragmentation of ice crystals
- Ice splinter produced in riming
- Contact nucleation
- Condensation or deposition uncleatior

Figure 3.11 Maximum ice particle concentrations observed in mature and aging maritime (open humps), continental (closed humps), and transitional (halfopen humps) cumuliform clouds. The line represents the concentrations expected at the cloud-top temperature. (From Hobbs and Rangno, 1985. Reprinted with permission from the American Meteorological Society.)

Figure 8.12 (a) Vertical cross section of cloud and radar echo structure of a supercell thunderstorm in northeastern Colorado. The section is oriented along the direction of travel of the storm, through the center of the main updraft. Two levels of radar reflectivity are represented by different densities of hatched shading. The locations of four instrumented aircraft are indicated by C-130, QA, DC-6, and B. Bold arrows denote wind vectors in the plane of the diagram as measured by two of the aircraft (scale is only half that of winds plotted on right side of diagram). Short thin arrows skirting the boundary of the vault represent a hailstone trajectory. The thin lines are streamlines of airflow relative to the storm. To the right is a profile of the wind component along the storm's direction of travel. (b) Vertical section coinciding with (a). Cloud and radar echo are the same as before. Trajectories 1, 2, and 3 represent three stages in the growth of large hailstones. The transition from stage 2 to stage 3 corresponds to the reentry of a hailstone embryo into the main updraft prior to a final up-down trajectory during which the hailstone may grow large, especially if it grows close to the boundary of the vault as in the case of the indicated trajectory 3. Other, less-favored hailstones will grow a little farther from the edge of the vault and will follow the dotted trajectory. Cloud particles growing within the updraft core are carried rapidly up and out into the anvil along trajectory 0 before they can attain precipitation size. (From Browning and Foote, 1976. Reprinted with permission from the Royal Meteorological Society.)

Zipser 1977

- No shear: single, short lived cumulus cell
- weak shear: multicells
- Stronger shear: MCC
- Strongest shear: single supercell convection

What are the dynamic and cloud microphysical causes?

Figure 8.15 Profiles of wind speed u used in three-dimensional model simulations of multicell and supercell thunderstorms. Profiles becomes asymptotic to u_s . (From Weisman and Klemp, 1982. Reprinted with permission from the American Meteorological Society.)

Figure 8.16 Results of three-dimensional model simulations of thunderstorms under different amounts of wind shear. The quantity plotted is the maximum vertical velocity as a function of time for different values of the wind-shear parameter u_3 (m s⁻¹), which is the number plotted next to each curve. (From Weisman and Klemp, 1982. Reprinted with permission from the American Meteorological Society.)

Convective cells:

- Thermodynamics structure of the atmosphere, e.g., CAPE and CINE determine the probability of occurrence of convective cell;
- Dynamic structure determines
 - lifting air to LFC
 - Vigor and life-time
 - Movement

OThe COMET Program

Shear instability:

 $\frac{\partial \vec{V}}{\partial z} = \frac{\partial u}{\partial z}, \frac{\partial v}{\partial z}$

Influence the growth of the convective cells

Influence vorticity of the convection:

 Convection prefer cyclonic flow (counter-clockwise in NH, clockwise in SH), which stretches vortex and promote rising motion.

Thus,
$$\frac{\partial u}{\partial z}$$
 or / and $\frac{\partial v}{\partial z} > 0$

enhances convection

u,v

Mesoscale convective systems:

Zipser 1977

Condition for generating strong mesoscale convection:

- Unstable lapse rate, high humidity
- Near the jets core
 Trough titled westward with height, surface low to the east of upper-level trough

Severe-thunderstorm environment

Dynamic condition for formation of the mesocyclones and supper cell:

Under strong wind share, a horizontal cyclonical vortex can rise following a spiral motion and form a mesocyclone.

A vortex tube is titled vertically to form a mesocyclone.

for a larger swirl ratio

Figure 15.11 Tornadoes with swirl ratios (S) of: (a) S = 0.3; (b) S = 0.8; and (c) S = 2.0.

- No shear: single, short lived cumulus cell
- weak shear: multicells
- Stronger shear: MCC
- Strongest shear: single supercell convection

What are the dynamic and cloud microphysical causes?

Figure 8.15 Profiles of wind speed u used in three-dimensional model simulations of multicell and supercell thunderstorms. Profiles becomes asymptotic to u_s . (From Weisman and Klemp, 1982. Reprinted with permission from the American Meteorological Society.)

Figure 8.16 Results of three-dimensional model simulations of thunderstorms under different amounts of wind shear. The quantity plotted is the maximum vertical velocity as a function of time for different values of the wind-shear parameter u_3 (m s⁻¹), which is the number plotted next to each curve. (From Weisman and Klemp, 1982. Reprinted with permission from the American Meteorological Society.)

Clouds/precipitation formed by Mid-latitude frontal systems:

• Cold fronts:

- a zone where cold, dry stable polar air is replacing warm, moist and unstable subtropical air.
- •
- Across a cold front from warm to cold side:
 - i. temperature drops rapidly
 - ii. wind speed increases and wind direction changes
 - iii. pressure decreases first and then increases
 - iv. clouds change from cirrus to nimbocumulus to stratus or stratocumulus
 - v. a narrow band of heavy precipitation associated with nimbocumulus.

Warm fronts:

- Occurs when the advancing warm air replaces the retreatin cold air.
- Across a warm front from cold to warm side:
- i. temperature rises and pressure decreases
- ii. surface wind change direction
- iii. clouds: $Ci \Rightarrow Ns \Rightarrow St$
- iv. light-to-moderate rain or snow
- v. temperature inversion ⇒ no inversion

Sea Breeze and mountain valley breeze:

mountain valley breeze:

Cloud & rainfall form along mountain top in early afternoon, In valley at night.

Cloud microphysical process in real clouds:

Interaction between cloud microphysical processes:

Figure 5.46 Schematic of interaction of altocumulus and stratocumulus clouds. (a) Dendmae crystals in a fallstreak from the altocumulus fall into the stratocumulus, where they grow by riming and reach the ground as light precipitation. (b) Small ice particles in a fallstreak from the altocumulus grow into needles in the stratocumulus and contribute to the precipitation at the ground. (From Locate al., 1983. Reproduced with permission from the American Meteorological Society.)

Ice crystals fall from altocumulus grow by riming in stratocumulus below and produce precipitation. A_c and S_c alone would not produce precipitation.

Interaction between cloud microphysics and dynamics:

penetrations of small cumulonimbus and large cumulus clouds. (From Hobbs and Rangno, 1985. Reprinted with permission from the American Meteorological Society.)

Ice enhancement

Possible causes:

- Fragmentation of ice crystals
- Ice splinter produced in riming
- Contact nucleation
- Condensation or deposition uncleatior

Figure 3.11 Maximum ice particle concentrations observed in mature and aging maritime (open humps), continental (closed humps), and transitional (halfopen humps) cumuliform clouds. The line represents the concentrations expected at the cloud-top temperature. (From Hobbs and Rangno, 1985. Reprinted with permission from the American Meteorological Society.)

Figure 8.12 (a) Vertical cross section of cloud and radar echo structure of a supercell thunderstorm in northeastern Colorado. The section is oriented along the direction of travel of the storm, through the center of the main updraft. Two levels of radar reflectivity are represented by different densities of hatched shading. The locations of four instrumented aircraft are indicated by C-130, QA, DC-6, and B. Bold arrows denote wind vectors in the plane of the diagram as measured by two of the aircraft (scale is only half that of winds plotted on right side of diagram). Short thin arrows skirting the boundary of the vault represent a hailstone trajectory. The thin lines are streamlines of airflow relative to the storm. To the right is a profile of the wind component along the storm's direction of travel. (b) Vertical section coinciding with (a). Cloud and radar echo are the same as before. Trajectories 1, 2, and 3 represent three stages in the growth of large hailstones. The transition from stage 2 to stage 3 corresponds to the reentry of a hailstone embryo into the main updraft prior to a final up-down trajectory during which the hailstone may grow large, especially if it grows close to the boundary of the vault as in the case of the indicated trajectory 3. Other, less-favored hailstones will grow a little farther from the edge of the vault and will follow the dotted trajectory. Cloud particles growing within the updraft core are carried rapidly up and out into the anvil along trajectory 0 before they can attain precipitation size. (From Browning and Foote, 1976. Reprinted with permission from the Royal Meteorological Society.)

Lightning and cloud microphysics

- Charge reversal temperature: -10C ~ -20C
 - Colder than this, negative charges are transferred to grauple
 - Warmer than it, positive charges are transferred to graupel.

Figure 8.3 Schematic of the electrical structure of a cumulonimbus cloud. Positive and negative signs indicate the polarity of the charge at various locations. Streamlines indicate direction of airflow. (From Williams, 1988. © Scientific American, Inc. All rights reserved.)